Rules of Thumb

$$
\eta=\sin ^{2}\left[\frac{\pi \Delta n_{2} d}{\lambda \cos \left(\alpha_{2 B}\right)}\right]
$$

Reaches a maximum when:

$$
\Delta n_{2} d / \cos (\alpha)=\lambda / 2
$$

So if the thickness-modulation product is smaller than half the wavelength, the grating is not effective. The thickness-modulation product can be larger, and still yield high efficiency, but at the expense of bandwidth.

So for low angles, the reddest grating possible is about $2 \times 50 \mu \times 0.1=5 \mu$. At larger angles (high dispersion), this is reduced.

On the blue end, this equation gives no limit, but the limit is set by the condition for a grating to behave as a "thick" device:

$$
\rho \equiv \frac{\lambda^{2}}{\Lambda^{2} n_{2} \Delta n_{2}} \geq 10
$$

For short wavelength and large fringe spacings, $\Delta \mathrm{n}_{2}$ must be small. But the lower limit is set to about 0.0035 (with 50μ emulsion and 350 nm radiation) by the Kogelnik approximation we just used. The above condition is therefore not met for 300 or $6001 / \mathrm{mm}$ gratings at 350 nm .

